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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-400

ANALYSIS OF FRAME-REINFORCED CYLINDRICAL SHELLS
PART I - BASIC THEORY 1

By Richard H. MacNeal and John A. Bailie

SUMMARY ‘
\

The state of stress in and near a reinforced frame subjected to concentrated loads
and moments and supported in a circular cylindrical shell is investigated and shown to
be mainly dependent upon a single parameter. The theoretical approach is new and
enables tables of coefficients for the calculation of loads per inch in the shell as well
as loads and deflections in the frame to be evaluated using a digital computer. The
tables are presented in Part III of this report.

A comparison of this work and two existing theories is made to show relationships
between parameters developed in the three methods of analysis. The usefulness of
these two theories is thereby extended. Although mainly applicable to airplane fuse-
lages, the results can be applied to problems involving cylindrical shells whose
thicknesses are small compared to their diameters, such as ballistic missile bodies.

INTRODUCTION

The analysis of stress distribution in a flexible-frame-supported cylindrical shell,
when the shell's frame is subjected to concentrated loads, is a problem of considerable
complexity. There are two approaches for the solution: One is to take advantage of
the advances in high speed computers to make a complete redundant analysis; the other
is to develop a method which is simple and quick to apply, and which promotes deeper
understanding of the problem. This latter approach, although lacking precision due to
the simplified assumptions involved, is the one adopted in this report.

Wignot, Combs, and Ensrud (ref. 1) developed the first theoretical solution to
the problem. Their model of the shell assumes that there are no frames, except the
loaded frame, that the longerons are infinitely rigid for axial loads and infinitely flexible
for bending loads and the shear panels have uniform shear stiffness. In this solution, the
perturbations from the Engineers Bending Theory are assumedtodie out withina "length to
the undistorted section'" L, which is chosen empirically. Manycurves, giving the loads and
deflections in the loaded frame as a function of one parameter, are included. Shortly
after this work (ref. 1), Hoff presented an analysis (ref. 2) based on the assumption

lOriginally prepared as IMSD 49732, Lockheed Missiles and Space Pivision,
Sunnyvale, California, and reproduced in original form by NASA, by agreement with
ockheed Aircraft Corporation, to increase availability.



that all the unknown quantities are harmonic in the polar angle of the shell and the
unknown coefficients are evaluated by a strain energy technique. The structural
model of the shell in references 2, 3 and 4 allows for axial and bending stresses in
the shell, and considers the shell frames to be equally spaced and to have moments
of inertia equal to that of the loaded frame. The ideas presented by Hoff

enabled Duberg and Kempner, by the use of recurrence formulas (ref. 3), to present
curves giving the loads in the shell as a function of two parameters (ref. 4).

The model adopted in the present report (the first of three reports on shell analysis)
is similar to that of references 2, 3, and 4, with the exception that the frames which
are not loaded externally are assumed to be "'smeared out" in the axial direction,
producing a shell with a circumferential bending stiffness per unit length. It is fully
realized that practical structures often bear little similarity to the model suggested.
Methods are presented in the appendixes which account for some of the differences
between the model and practical shells and results are compared with those of refer-
ences 1 and 4. The problem of discontinuities of circumferential bending stiffness in
the axial direction is solved in reference 6. Reference 7 provides a large number of
tables from which the loads and deflections can be computed. It also contains suggestions
for handling shells which differ from the model in a number of respects.

GLOSSARY OF SYMBOLS

A 2. 25/y4 parameter of references 3 and 4

An arbitrary constants of equation (39)

a_ ? - 1)(Lr/Lc)2/3

B y2/(Lr/Lc)2~parameter of references 3 and 4

C .etc. coefficients degcribing loads in shell and loads and displacements in the
ap loaded frame ?see equations (88) to (95))

Dij elements of the matrix defined in equations (A. 10) and (A. 11)
d parameter of reference 1

E Young's modulus, lbs/in2

Epn,etc. arbitrary constants in equation (B-1)

e base of natural (Naperian) logarithims

F axial force in loaded frame (lbs)

f transverse load per inch in shell (lbs/in.)
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In

, ete.

shear modulus (lbs/inz)

arbitrary constants in equations (34) and (35)

eccentricity between shell and loaded frame's neutral axis (ins.)
moment of inertia of a typical unloaded frame (in4)

moment of-inertia of frameat x = 2 (in4)

moment of inertia of the loaded frame (in4)

1/¢, (in%)

V-1

ndn’-10 ¢ /203 T e,

distance from loaded frame to undistorted shell section (in.)

characteristic length (see Glossary)=r [ t' r2/i ]Z/ﬁi— (in.)

characteristic length (see Glossary) = r ~/ Et'/ Gt/2 (in.)
frame spacing (in.)

bending moment in the loaded frame (in.-lbs)
externally applied concentrated moment (in.-lbs)
bending moment per inch in the shell (in. -lbs /iﬁ.)
constant defined in equation (38)

index of harmonic dependance in the ¢ direction
externally applied concentrated radial load (lbs)

axial load per inch in shell (lbs/in.)

roots of the characteristic equation (equations 23 to 26)
shear flow in skin (lbs/in.)

shear flow applied to the frame (lbs/in.)

radius of the skin line (in.)

transverse shear in the loaded frame (Ibs)



ii

=

transverse shear per inch in shell (lbs/in.)
externally applied concentrated tangential load (lbs)
skin panel thickness (in.)

effective skin panel thickness for axial loads (in.)
axial displacement of shell (in.)

tangential displacement (in.)

tangential displacement at shell neutral axis, when eccentricity between
shell and frame neutral axis is considered (in.)

radial displacement (in.)

82011

axial co-ordinate of shell (in.)

matrix elements giving the stress-displacement relations at
free end of a semi-infinite shell

real part of the complex roots of the characteristic equation
imaginary part of the complex roots of the characteristic equation
real roots of the characteristic equation

"beef-up'' parameter = IO/2i Lc

rotational displacement of the loaded frame *
Ei(n3 - n)2 /Gtr4

nz(n3 - n)2 i/t r®

polar co-ordinate of frames and shell

g/r - eccentricity parameter

denotes symmetric harmonic coefficient

denotes antisymmetric harmonic coefficient

When an expression holds for both cases, the symmetric .case is derived.
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GLOSSARY OF TERMINOLOGY

The terms '"Input Impedance" and "Characteristic Length" are frequently used
in this report. They are defined as follows:

Input Impedance is the relationship between the tangential displacement and
shear flow harmonic coefficients of the shell at the section of the loaded frame.

Characteristic Length . In this report there are two characteristic lengths
defined as follows: (1) L _ is the distance required for the exponential envelope
of the lowest-order, self-equilibrating stress system to decay to 1/e of its value
at x = 0, provided that the skin panels are rigid in shear. (2) L_ is the distance
required for the envelope of the lowest-order, self-equilibrating sfress system to
decay to 1/e of its value at x = 0, provided that the frames are rigid in bending.

A REINFORCED LOADED FRAME IN AN INFINITE, UNIFORM SHELL
Plan of the Report

In this part of the report analytical solutions are obtained describing the state of
stress in and near a reinforced frame subjected to concentrated loads and situated in
an infinite, uniform, circularly-cylindrical shell. These solutions,and the mathemat-
ical analysis leading to them,form a basis for developments in the rest of the report
and in references 6 and 7.

Many reinforced shells contain longitudinal members, called longerons, carrying
most of the direct stress. If the total direct-stress-carrying area of both skin and
longerons is divided by the circumference, an effective skin thickness resisting direct
stresses is derived. The process of finding the contribution of the longerons to the effec-
tive thickness is described as ''smearing out" the longerons.

In these analyses, the longerons are assumed to be "smeared out", producing a
uniform shell with thickness, t, for shear loads and thickness, t', for axial loads.
In addition, the frames that are not externally loaded are ""smeared out" in the axial
direction to produce a circumferential bending stiffness, Ei, per unit length. The
bending stiffness of the externally-loaded frame is not "smeared out’. The advantages
claimed for this approach are:

(1) A simplification of the mathematical process involved in getting a solution.
Previous solutions were only partly analytic in that certain coefficients could
be obtained only in numerical form. The simplification of the results pro-
motes clearer insight into the processes involved. It also permits easier
extension to more difficult problems.



(2)

Elimination of one parameter in plotting solutions. In references 3 and 4,

two parameters were required in order to describe the properties of a uniform
shell. In the present analysis, two parameters are required to describe the
properties of a shell in which the loaded frame may be reinforced. For shells
typified by conventional transport airplane construction and ballistic missile
bodies, only one of these parameters is important.

In "smearing out" the shell frames, but not the loaded frame, the effect of finite
frame spacing on the solutions is eliminated. This effect is treated in Appendix A,
where it is shown that a simple approximate correction gives good results for most
practical cases.

The loads and deflections in the shell and loaded frame are shown in figures 1 and 2.

(1)

(2)

3)

(4)

(5)

Assumptions

The loaded frame has in-plane bending flexibility. It is perfectly free to
warp out of its plane and to twist. It has no extensional or shearing
flexibilities.

The effect of the eccentricity of the skin attachment with respect to the frame
neutral axis is ignored.

The shell consists of skin, longerons, and frames similar to the loaded
frame (but possibly with different moments of inertia). The skin and longerons
have no bending stiffness.

The longerons are ''smeared out" over the circumference giving an equivalent
thickness, t', (including effective skin) for axial loads.

The shell frames are "smeared out' in the axial direction, giving an equivalent
moment of inertia per inch, i, for circumferential bending loads.

Method of Solution

An exploded view of the shell is shown in figure 3.

(1

Partial differential equations are written describing relationships between
internal forces and displacements in the shell.

(2) Dependence of all unknown quantities on the polar angle ¢ (see fig. 1) is

assumed to be harmonic. For example

00 o]
q = z q sinng —z ﬁ_ncos ne
n=1 n=o0

82011
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(3)

)

()

(6)

-3

This step reduces the partial differential equations of step (1) to ordinary
differential equations in x (with n as a parameter) which are combined and
solved.

Since the shell is symmetrical with respect to the plane x = 0, the axial dis-
placement, u, is planar for x=0. This boundary condition permits a
definite expression to be written between the shear flow harmonic coefficients,
ﬁn, and the tangential displacement harmonic coefficients, Vn ,at x=0.

Another relationship involving (in, v _, and the applied concentrated loads
is obtained for the loaded frame,”andlyzed as a free ring.

Combination of the expressions obtained in steps (3) and (4) results in the
determination of qn and all other harmonic coefficients in terms of applied loads.

The complete solution is synthesized from the harmonic coefficients.

The "elementary beam theory' part of the solution (n =0, 1) is treated
separately from the self-equilibrating part (n=2, 3, 4..... ).

Partial Differential Equations of the Shell

Equations are written with reference to the infinitesimal element of shell, shown
in figure 4.

Equations of Equilibrium

1

1of 99 _s _
rop O9X r 0 (@)
% -
20 +f =0 3)
—aﬂ-sr=0 4)



Stress-Strain Relationships

' Bu
P Et ox
_ 1
q= -Gt (r
86 _ _ mr
3¢  Ei
Strain-Displacement Relationships
oW -
e gr - v
v _
o9 7

Derived Relationship Between Shear Flow and Tangential Displacement

au

9¢

v

ox

)

Combine equations (7), (8) and (9):

mr _ _1.(22 .
Ei r \3¢
Combine equations (2), (3) and (4):
q _ _l_( 9
ox r2 3
Combine equations (10) and (11):
x _E 8>
ox r4 8¢3

(5)

(6)

()

(8)

&)

(10)

(11)

(12)

Equations (1), (5), (6), and (12) are written in terms of the variables p, q, u, and

v, which are of primary importance in all parts of the report.

Introduction of Harmonic Coefficients

The solution to any problem concerned with the shell is periodic with period 27 in
the polar angle ¢ . Hence, all unknown quantities may be expanded by Fourier series

in ¢ .

It is convenient to consider the symmetry of the solutions with respect to ¢ = 0.
For a unit radial load at ¢ = 0 (see fig. 1) solutions will be symmetrical with respect

820111
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to =0, while for unit tangential or moment loads they will be antisymmetrical as
shown below:

‘ P° MO T
7 BN 7N
q q q % q
p:z P, cos ng; q=z q sinng p= Zﬁnsinmp; q= —2 En cos n¢
=0 =1 n=1 n=o
(13) (14)
uzz u_cosneo; v:z vV _sinng u=z unsinn¢; v=—2 ﬁncoanh
=0 n=1 n=1 =0

For any particular value of n, the antisymmetric terms are symmetric with
. respect to a plane with polar angle ¢ = 7/2n , since if ¢ = ¢' + 7#/2n , then

sin (n¢) = cos (n¢>')

-cos (ng) sin (n¢')

Hence, a homogeneous relationship (one not involving the loads directly) between
antisymmetric harmonic coefficients with the same index, n, will have identical form
with the corresponding relationship between symmetric harmonic coefficients.

Substitute equation (13) into equations (12), (1), (15) and (6) and obtain relation-
ships between symmetric harmonic coefficients of a particular order. Repeat, using
equation (14) instead of (13), to obtain the antisymmetric harmonic coefficients. In so
doing, make use of the following identities:

(_313 + %) 2sin ng = -(n3 -n )2 sin n¢
o0 (15)
3 2 2

(33 +% cosn¢>=-(n3—n) cos n¢
9




1C

The results are: —

(16)

S 8.8

]

R l=~]

2

=]
il

o

e e’ | — ———

(17)
n_n= _
dx r 4, 0
1 al-11'1
P = Ef -2
n :__" (18)
u
= _ 1 __Il
Py = Et dx
n an)
g-Gt(2w -0
qn r n dx (19)
n = dvn
qn—Gt(; Un " )

It is evident that it is sufficient to consider symmetrical coefficients alone, except
for relationships involving applied loads; the results will also apply for antisymmetrical
coefficients. In the work that follows, where both types of coefficients exist only the
symmetrical one is indicated. It is now known that the equations for the antisymmetrical
case have the identical form, but they are omitted for conciseness.

Formulation and Solution of the Characteristic Equation of the Shell

Equations (16) through (19) are first combined to obtain a single equation.

Differentiate equation (19) and substitute from equations (16) and (18) to yield

— — 3_
Uy _ ln P, T (20)
dx OBt gimd-m? dxO

8c0T~1
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Differentiate (20), substitute from equation (17), and rearrange to give:

2
_ Ei(n3 - n)z . d qn n2§n3 —4n)2 i

+ 7 q = @
Gtr4 dx> t r® n

—
=

(21)

The general solutions of this equation are exponential functions of the roots of the
characteristic equation which is:

where

Equation (22) is a biquadratic equation, so that there is no difficulty in obtaining

the roots.

Using identities 58.

For /A > ( 8/2)%

For A\ < ( 9/2)2

pt_ epZ s A= o

e - Eign?’—nl2
Gtr4

n2!n3v n!zi
B -
A = R

= 82+ YA (8/22 for A>(68/2)°
= €2 £V (6/2)2 - A for N« (9/2)2

1 and 58.2 of reference 5, we have:

J
I

3 -/M-i/ix_-_f’&=—a—jﬁ
2 2

- NA+6/2 +3 NA-86/2 = - a +j8
4 2 2
1

p) 2
_ k-2 8\ _
Po=-| 3" (2) -’\-}

J
[

]
1
R

—

d
0o
I
]
N
i
]
wlo
]
/\
o
S
¥
5
-
)
]
1
=]
]

(22)

(23)

(24)

(25)

(26)



12

For the particular problem at hand in which the shell extends to infinity, solutions
corresponding to the roots with positive real part (P3 and P4) must be discarded for
x > 0 and vice versa for x < 0 .

It is important to relate the roots obtained above to the physical properties of the
shell in a manner that is both convenient for computation and suggestive of important
relationships. The usefulness of the following definitions will be seen later. Define:

1
2 |4 the characteristic length
L = = tr ~ ith rigid shear panels &7
¢ \/—6- i W1 g1a s P
L T Et _ th‘e’:chcha‘lr%c;enstlc length (28)
T 2 Gt w1 rigl rames
=
3
Evaluate o and B8 from equations (23) and (24) in terms of these coefficients. 8
Since « and B depend on the harmonic index, n , a subscript n is added. e o)
1 1 1 1
1 1 1 5
a = _A—_% 1+ e 2 B = L 1- )
n 2 2 VA no 32 2 VA
now 1 i .
_/\_4 _ n2 n -n) i - n n2 -1
¢ r® VE L
c 4
3 2 6 L2 2 L .2
] _ Ei(m” -n)~ . c _ n -1 <_r>
2V 2Gtr? n2@? - 1) 3 Le
Hence
2 L 2
1 ny n” -1 n" -1 ( T )
o 1+ = (29)
n L s 3 \L
1 n/nz—l n2—1 (Lr)2
Bn =1 -3~ \¢T" (30)
c 2v 3 c
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In the case of real roots:

in _
2n
Define:
2
a_ = @ = n” - 1 i) (31)
n T 2vA 3 L,
then 1
2
aln __1_.nw/n2—1 a_ =+ az—l
a T L V6 ) n n (32)
2n c
It can be shown by direct algebrai¢ manipulation that:
@ te, = 2an (33)
This relationship will be useful later.
The form of the solution for complex roots corresponding to x>0 is:
an = Glne-anxcos(ﬁnx + GZn) (34)
The form of the solution for real roots corresponding to x >0 is:
— ~Q1pX ~Wonx
q, = G3ne + G4ne 2n (35)

Justification of the term '"'characteristic length" is obtained from equation (34).
If L is set equal to zero and n is chosen equal to 2, then a, = 1/L, from equation (29).
Hence, L. is the distance required for the exponential envelope of the iowest order self-
equilibrating stress system to decay to 1/e of its valueat x = 0, provided Ly=0.
For transport fuselage shells, 1,/L, is of the order of 0.3. For such a value, it will

be observed that, for n=2, ap is very nearly equal to 1/1L, .

The justification of the definition of L, is obtained by allowing i to become
infinite in equation (20). The roots of the characteristic equation then become

P =% n/2L (36)
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The solution, valid for x >0 and corresponding to these roots, is:

e~ nx/2 L,

@) = Cpp (37)
Hence, L, is the distance required for the envelope of the lowest-order, self-
equilibrating stress system to decay to 1/e of its value at x = 0, provided that the
frames are rigid.

For L. and L, not equal to zero, the form of the solution will change from
decaying smusmd to exponential type for n sufficiently large. The critical value of
harmonic index for which this transition occurs is, from equation (30):

L 2
N, = /1+ 3(?‘) (38)
It will also be observed in equation (29) that for n=0 and for n=1, and

B are zero. This means that the corresponding terms in the solution experle%ce no
drelcay for increasing x . These terms are, in fact, just those that would be predicted
by elementary beam theory. Their effect will be added to the solution at the very end.

Introduction of Boundary Conditions. The Relationship Between Tangential Shear Flow
and Tangential Displacement Harmonic Coefficients at x = 0

At x =0, axial dlsplacement is planar due to the symmetry of the shell. Hence,

=0 for n»2. pg,, u s and v, satisfy equation (21) as well as qp, so that the formsv

o?solutlon given in equatlons (34) and (35) are valid for all quantities.

Hence:

=1
|
»>

_ _anx .
n n® sin an n < Nc (39a)

- —a, X
u =An<e X _ o 2“) n>N

n c (39b)

Bn can be obtained using equation (18), and q, can then be obtained using equation (17):

I

- 1 —QnpX _ .
P, Et Ane [ o sing x+ B, cos an} for n < Nc (40a)

k=l
]

P =EtA | -a e %f+q. e %on* for n > N (40b)
n 1n 2n

(continued)

82011
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el
il

,g—anx(Z_Z). B
AnEt o€ [an Bn sin g x Zanﬁn cos an forn<Nc (41a)

= |
It

' T 2 _-oqpX 2 -og.X
AnEt n[ e -, e n forn>Nc (41b)

Evaluate An in terms of qn(o), the shear flow coefficient at x = 0:

A - on. 1 GO N (42a)

i c
n r Et Zanﬁn
n 1 q,) N
Arl = EBEf -<a-—-—2 D )for n>N, (42b)
1n QZn

Substituting equations (42a) and (42b) into (41a) and (41b), respectively, gives

2 2
a -8
- _ = -a_X \'n "n/ _.
qa, qn(o)e n !:cos an 2an Bn sin 3nx:| for n<Nc (43a)

i=]]

oz2 e—amx az e—a2nx
2n for n< Nc (43b)

In
2 (az -a2
1in 2n

L= a0 -
qn |:(aln_aZzn)

Evaluate Vn from equation (16):

4 _ 2 2 2
r g (o) a -f o —52
n 6~ %X Han " ( n n> ‘cos an + ‘Bn_ n n)]sin ﬁx

v =
n Ei(n3-n)2 20[n 2Bn
for n< Nc (44a)
4 3 -o,.X 3 -0, . x
1
- r qn(o) “1n° " %2n® 2n for n >N (44b)
v = - c
D i m2 (2 _az) (az _a?
in"-n) %1n 2n in 2



16

The relationship between Vv (o) and § (o) will be used in conjunction with a
similar relationship for the loaded frame to Solve the combined problem.

7 (o) 4 302 - g2
=1 = L : 11 for n < N (45a)
qn(o) Ei(n3 - n)2 2O[n ¢
ot af - ozg
= . n " lfor n > N (45b)
Ei(n3 - n)2 ozz - ozz ¢
1n 2n

It can be shown that equations (45a) and (45b) are formally identical. Define:

3a2-32 2
K = L n nznn-l'1+2an (46)

n c 20ln 2/_3—' \/_i_‘*’—a—n

See glossary of symbols for definition of a, . Also define:

3 3 2
* %1n ~ %ap _ %Un " %1n%n " %on
k' - 1 [An_"2n ) g @7
n (¢ 2 _ 2 c ozl + 012
O[ln a2n n n
Using equation (33) in (47) and simplifying,
2 1+ 2a
* -
k- n/n 1 n K (48)

Ve J1va, "

The form of the relationship between tangential displacement and tangential shear
flow, the input impedance, is,therefore, the same forall n > 2, andis:

¥ (o) 4 K
n o T . _n (49)

qn(o) Ei(n3 - n)2 (o]

Notethat K = 1 for n = 2 and L/L = 0.
n r/ ¢

Since the form of the relationship between the symmetric and antisymmetric
harmonic coefficients is identical, equation (49) is also valid for antisymmetric cases.

QcOoT~T



3N

1.-1028

ey
-3

Equations for the Loaded Frame

The differential equations for the loaded frame are similar in form to the relevant
equations for the shell. The net shear flow, Aq, is equalto q(o*) - q(0o-), and acts
on the frame.

Equations of Equilibrium

%%—Aq—%+t?a= 0 (50)
g—i + F+p. = 0 (51)
%— Sr-m_ = 0 (52)
Stress-Strain Relationship
@ " (53)
Strain-Displacement Relationships
g—;"— = -v+ 01 (54)
g—(‘; = w (55)

The above equations are combined in order to give the net shear flow in terms of
tangential displacement and applied loads.

Combine equations (53), (54) and (55):

3
Mr _ d¢ _ _1fdv dv
Bl " dp T T <d¢+ 3> (56)
Combine equations (50), (51) and (52):

3 d"m dp t

1 [dM , dM 1 a 1 a a

Ad=-—5 |—=% * 3¢ +—( +m>———+— (57)
r2 <d¢3 d¢> r2 d¢2 a r d¢o r
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Combine equations (56) and (57):

3 2

EI 3 d"m dp t

o d d 1 a a a

a2 S5 v+—( +m>— 2.2 (58)
r4 <d¢>3 d¢> r d¢2 a ¢ r

e

Calculation of Shear Flow Harmonic Coefficients

For the case of concentrated loads applied at ¢ = 0 (see fig. 1), the distributed
loads P, ta , and m, can be represented by the following Fourier expansions in ¢ :

Symmetric Case m_ =t =20

a a -
0 1
5 5
p, = z Pan cosn ¢ M
n=o @
(59)
I)o Po -
= — 4+ —=
o p cosng
n=1
Antisymmetric Case p.=0 o
- = -9, 09
m, = z m, = cos ne 5r + - z cos n¢ (60) A
n=0 n n=1
t =Z€ cos np = 2 .0 z cos no (61)
a a 27 m
n=o0 D n=1

The above Fourier expansions do not converge. However, results based on them
do converge to the correct values.

Introduce harmonic coefficients from equations (13) and (14) into equation (58) using
equation (15).

Symmetric Case

anz_ T @ -0t e — for n » 1 (62)
r (continued)
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For n o2, Aq = 2q/()
Hence, _ EI0 3 nP
q(o)=-2—z(n -t v+ =20 for n » 2 (62a)
by
Antisymmetric Case
2
El (1 -n°)M T
= (o] 3 2 = o] (8]
(©=-—"% 0@ -nv-—""3" - (63)
qn 21'4 n 27rr2 2171‘

Equations(62) and (63) can be combined with equation (49) to give the shear flow
coefficients in terms of applied load:

Q
3 Symmetric Case
1
= EIo Kn nPo
GO = g5 "L BT Tr for n > 2 (64)
Define:
Io
Y T 2iL (65)
c
v is a measure of the bending stiffness of the loaded frame relative to the bending
stiffness of the shell.
Th
en 0P
o
= - 2qr
g0 = T3 7K (66)
Anticvmmetric Case
__]:_. 5 + 1- n2 M
= _ _2r }r r2
q,(0) = TFyK_ (67)

K _, which increases as n3 for large n, provides fairly rapid decrement of these
e>r<1pressions. Equations (43a) and (43b) can be used to obtain the shear flow coefficients
for x > 0.

Equations (66) and (67) are used to generate the entire solution to the problem.
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Axial Load Harmonic Coefficients

The harmonic coefficients for axial load per inch can be obtained from q,(0)
as follows, substituting equation (42) into equation (40):

ol
|

-anpX o'
= —_(o)-&——n— cos B X - L sing x for n< N
n 9 2rozn n Bn n

(68)

n

-~ - X -0, X
- —_— n" -
N qn(o) 5 5 (alne o, € 2n> for n >NC (69)
rie, -a. )

1n 2n

el
1]

The above expressions are also valid for the antisymmetric case if g (o) is
replaced by q (o) (refer to pages 8 and 9). Values for Vn are given directly by
equation (41), while values for T_ can be obtained by substituting equation (42) into
equation (39). n

g20T-1

Internal Load Harmonic Coefficients

Values of internal 1oads in the loaded frame are separated into two parts: one
part due to the applied concentrated loads plus the net shear flow components for n = 0
and n = 1; the other part due to the net shear flow components for n > 2. This e
separation is illustrated symbolically for the symmetric case below.

R

B-O0

o0

—Aq=ﬂ—$ sin ¢ ~-Aq = - ZZq (o) sin n¢
n=2

The solution for the first set of loads will be referred to as the "elementary beam
theory' part. This solution is well-known and is given on page 24. The part of the

solution referred to as the self-equilibrating part is that for which harmonic coefficients
can be defined and evaluated simply.




N
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The applied loads do not enter explicitly into the determination of the self-

equilibrating part of internal frame loads (only the shear flow). Hence, for properly

defined harmonic coefficients, expressions for symmetric and antisymmetric co-
efficients have identical form. By analogy with the definitions of equations (13) and

(14), define:

Symmetric Case

Antisymmetric Case

o0

S:Zg sin n¢ S =

cos ng (70) F=

—22 Sn cos ngo

i- Fn sin n¢
n=2
i Mn sin n¢

n=2

Ty
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into equa%xons (50)n (51) and (52), with ta’ P, and m
including the antisymmetric case,are:

= 2r
S =-—""%- 9 (0)
n a- n2) n
v = 21‘ =
S =-—""75—4q(0)
n a - nZ) n
a
= 2rn —
F = ———— q_(o)
n a- n2) n
F - -2 g
1 (1 - nu) 1a
2
bt 2r —
M = ———— T (0)
n Q1 - n2) n
2
= 2r =
M = ——F5 q(o)
Noha-nd P

J

S , F , M_ can be evaluated by substituting the expressions of equation (70)
a set equal to zero.

The results,

(72)

(73)

(74)

It is noteworthy that the Fourier series for §, F, and M converge much more

rapidly than the series for ﬁn(o) and ﬁn(o) .
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Displacement Harmonic Coefficients

The radial, tangential, and rotational displacements of the frame are divided into
“elementary beam theory" and 'self-equilibrating" parts in a slightly different way. If
those displacements are expanded in Fourier series, the terms of order n = 0 and
n = 1 represent rigid rotation and translation of the frame. The amount of such rigid
displacement depends, furthermore, on the manner in which loads are reacted and can
be calculated in simple manner from "elementary beam theory." The terms of order
n 3 2 correspond to distortion of the frame. The tangential displacement harmonic
coefficients are expressed by equation (49), repeated below, in terms of the shear flow
harmonic coefficients.

v () 4 K q,(0)
_ . r . _n for n 3 2 (49)
gn(o) ﬁn(O)

The radial and rotational harmonic coefficients are defined as follows:

Symmetric Case Antisymmetric Case

o0 o0

w = Z\Wncoanb w:z v=vnsinn¢
n=2 n=2
o0

0 = z 6, sinng (75) 6 ="Z o cos n¢ (76)
n=2 n=
o0 [£4]

v = 2 7 sin ng v o=- v, €Os n¢
n-2 n=2

Substitute equation (75) into equations (54) and (55) and solve for én and Wn in terms
of v
n

W_ = nv

n n

_ o2 (77)
g -L=09 3

n r n

Substitute for v, from equation (49) and repeat for the antisymmetric case:

w 4 K q (o)
n|_ nr ..n n (78)
7 Ein® -m?  Te | § (o)
n n
[ e_n ]= a - n2)r3 . E‘L (in(o) ‘ (79)
5-11 Ei(n3 - n)2 Lc qn(o)

8c0T~1



L-1028

3N}
«

"Elementary Beam Theory' Part of the Solution

In this section, solutions are written down for the internal loads in the loaded
frame due to the external loads shown in figure below.

SYMMETRIC CASE ANTISYMMETRIC CASE
P

(-3

Aq Aq
P0 1 M
Aq :;;sm(p Aq :an T +—T sin ¢
The complete solutions for internal loads are given as reference 3 and reproduced
below:
|Load M S F

Pr P
P _2%[“%_;9_(77_(#)@%] ZW[M ""‘”COW} “E}O‘[?’C%Q*(w-msiw]

Tr T T
T, |3 ’; ¢)(1-cos¢)-—sm¢] 9—2[(w—¢)sin¢-@2ig—l-l l_i‘—“—‘?

o | (m- @) cos ¢ -l

M M MO
M0 E;Ql:(vr—cb)—z sind)] —2;;0-[1 + Zcos¢>] - —= sin ¢

T
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Complete Final Solutions

In this section, all the terms are combined to form complete solutions ready for
numerical calculation. In these solutions, the following are not included, as they depend

on the location of the reacting loads:

The ""elementary beam theory' part of the shear flow which should be
calculated from beam theory.

(1)

The ''elementary beam theory" part of axial load intensity (p) which should
be calculated from beam theory.

2)

(3) The rigid translation and rotation of the loaded frame.

Shear Flow Harmonic Coefficients
[l
i
n —
P o)
. - _ 27m™r o no
Symmetric: qn(o) = T35 Kn (66) Ay
2
- 21} T + (-0 I
. s = _ T [e] T o]
Antisymmetric: qn(o) =TT " Kn (67) R
Shear Flow
-~
= & : _& ““n _vn n i
q = qn(o) sin n¢ qn(o) cos n¢ ] e cos an Ta B sin Bx
n22 n“n
afn e—alnx _ ; o oy X
+ z [ q, (o) sin n¢ - qn(o) cos no } 2.2 (80)
n>NC 1n %on
Axial Load in Effective Skin of Thickness t'
n<Neg
= 2 l_& g : ne___anx ( ﬁ in B
p = LT qn(o) cos no qn(o) sin n¢ S ra cos an - sin ‘nx)
n=2 = n n
© . B N (ozm e ¥1n* _ @y e %on®
+2 [ - qn(o) cosn¢ - qn(o) sin n¢ ] p > 5 ) (81)
n>N %1n " %on
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¥
Frame Bending Moment
-
M = "elementary beam theory" part given in table on page 23
= - : 1 2 r2
+ q, (0) cos ng + q,(0) sinng | 3 (82)
=t 1 n1 -n%
Frame Shear
S = "elementary beam theory'" part given in table on page 23
oo -
] _ . = 2r
+ - g (o) sinng + g (o) cos ng (83)
[ n 2
n=2 (1 -n )
@
8 Frame Axial Load
—
p-l1 F = "elementary beam theory'" part given in table on page 23
o]
+Z Lc] (o) cos n¢+a(0) sin n¢ ] —2mn__ (84)
n n 2
n= (1 -n )
Frame Tangential Displacement
- = 21‘4 yKn
v v = [ qn(o) sin n¢ - qn(o) cos n¢ :l B T3 3 (85)
n= o (n - n)
4
Frame Radial Displacement
o = 4 n'yK
w = z d_(o) cos n¢ + q_(0) sin ne Zr. . n (86)
n n EI 3 2
n=2 (] (n” - n)
Frame Rotation
2
i _ _ 21_3 1-n%) -yKn
¢ = z [ qn(o) sin n¢ - qn(o) cos no :] El . 3 ) (87)
n=2 [ (n” - n)

Numerical Computations

Equations (80) to (87) have been evaluated using an IBM 704 computer. Twenty terms
of the Fourier series were used, and tables, giving the coefficients Cik defined below,
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are included in reference 7 for Lr/ LC = 0.2, 0.4, and 1.0 .

o]
* Com 3 (88)

PO LC TO L M L
Pl ) T AT G ()T (89)
bp p _ pm { .. r

M = C b Por + Cmt Tor + Cm M0 (90)
Mo
S = Csp Po * Cst To * Csm T (1)
Mo
Fo= Cfp Po M Cft To * Cfm T (©2)
v = C P ._'Y_If +C T __'}ﬁ + C M - y_ri_ (93)
vp "o EI vt "o EI0 vm o EI
'Yr3 'Yr3 VI‘2 (94)
w CWP P0 El " th To EL * Cwm Mo " EL
yr’ y’ _yr
0= CpPo L "%t To BT Gm Mo EI (99)

Illustration of the Effect of Frame Flexibility on Shell Loads

To illustrate the application of the solutions to a practical problem, consider the
stress analysis of a transport airplane fuselage with the characteristics given below and
subjected to an inward-acting radial load of 10,000 lbs at a frame whose moment of
inertia is 2.0in.4. It is well known that the stresses in the loaded frame are considerably
different from those derived by the use of beam theory and they are not discussed here.
They can be obtained from any of references 1, 4, or 7. Instead, attention is focussed
on the stresses in the shell.

Structural Characteristics

1 - 20 in? - 0.5 in* £ = 15.0 in.

= 0.04 in.

o
t = 0.20 in. r = 60.0 in.
Po = 10,000 lbs

8c0T~1
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Parameters required are calculated from the above.

L = 300 in. L = 115 in. L L =0.385 00.40 vy =0.10
o4 r r [] -

Using these parameters in the tables of reference 7 and equations (88) and (89)
provides the information necessary to plot figures 5 and 6. The plotted shear flows (and
stresses) and axial load intensities (and stresses) are corrections to "elementary
beam theory' only (see page 24).

In the stress analysis of cylindrical shells supported by frames it is common practice
to account for a departure from "elementary beam theory' of the shear stresses in the
immediate vicinity of the frame. Figure 5 shows that the perturbation in shear flows
propagates considerably farther in the axial direction than is normally allowed for in
the design. At one value of ¢ , sixty inches away from the loaded frame, the shear
stress differs from that predicted by "elementary beam theory'' by 1500 1bs[in2.

The differences in the axidl stresses predicted by '"elementary beam theory' and
the method of this report are even more marked. The beam theory suggests zero axial
stress in the shell at the station of the externally-loaded frame, while this report gives
3125 lbs/in? (see figure 6).

Lockheed Aircraft Corporation,
California Division,
Burbank, Calif., October 1959.
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APPENDIX A
CORRECTION FOR FINITE FRAME SPACING

In the main text, "A Reinforced Loaded Frame in an Infinite, Uniform
Shell, " solutions are obtained for an idealized shell whose unloaded frames are
""smeared out" in the axial direction to produce a uniform bending rigidity Ei per
unit length. To account for the effects of finite frame spacing there are two alternatives.
One is to write the equations for a finite length of shell in which i isput equal to the
circumferential bending stiffness per unit length of the skin-stringer combination, and
use the exact methods indicated in reference 6; however, such a solution would either
have to be derived for each particular combination of shell and frame characteristics
or more parameters would have to be introduced and the number of tables of the type
included in reference 7 would increase greatly. The second alternative is far more
expedient; it is to consider a technique whereby a correction to the basic parameter y is
computed. As a result, the first section and the tables of reference 7 can be used. To
accomplish this, the problem of a "frameless' bay adjacent to the loaded frame in an
infinite shell is solved exactly and used to derive approximate corrections to the solutions
of the first section. A comparison is made with the solutions of reference 4 for a shell
with equally spaced frames to check the validity of these approximate corrections.

8c0T~1

Distributing the frames in the axial direction, to give the shell a continuously
distributed bending stiffness, has two main effects on the stress distribution near the
loaded frame. These are:

(1) Since the loaded frame is not "'smeared out”, bending stiffness
of iZo/Z is effectively added to the shell on either side of the loaded
frame.

(2) Since the cross section undergoes more distortion near the loaded
frame than it does at a distance, the shell with ""'smeared-out" frames
offers additional support over and above that included in (1).

If the frame spacing is small, compared to the characteristic length,

and if the loaded frame is heavily reinforced, the effect of finite frame
spacing is small. A criterion for estimating the importance of the effect
is the following:

For

IO LC c 2
T 7 Z’Y('E—o) > 50 (A.1)

=

(o}

the effect of finite frame spacing on stresses in the loaded frame is negligible.

The "smearing out" of frames, other than ones immediately adjacent to the
loaded frame, has little effect on stresses in the loaded frame. Consequently,
the effect of neglecting finite frame spacing can be approximated by including
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a bay on either side of the loaded frame which has no bending stiffness,
as shown below.

— - ——|

X

/

LOADED
FRAME

AYS WITHOUT FRAMES

The value of £ selected for the above representation should be greater
than £,/2 and less than 4, . For (= £,/2, the shell has correct
total bending stiffness but the distance from the loaded frame to the
first supporting shell-bending element is smaller by a factor of 2 than
in the actual structure. For £ = £, , this distance is correct, but
the total bending stiffness of the shell is too small by an amount, 1iZ_.
In one example worked out later, it is shown that £ = 3/4 £, gives
good results.

The effect of finite frame spacing introduces an additional parameter,
fo/Lg. into the problem. This is undesirable from the point of view
of computations, since it increases the number of charts or tables
that must be prepared. Consequently, an attempt is made to account
for finite frame spacing by modifying the '"beef-up'’ parameter, vy.

The solutions given in reference 4 are correct for a shell with equally-
enaced. concentrated frames that have equal bending stiffness (including
the loaded frame). Hence, the approximations conslaered lete van ve
evaluated by comparison of these results with the results given in
reference 4. The assumption in reference 4 that the loaded frame has
the same moment of inertia as unloaded frames gives very low values
to the quantity on the left side of equation (A-1), which quantity has been
suggested as a criterion for the importance of finite frame spacing. It
is shown that reasonably good agreement is obtained between the results
obtained by the approximations and the results given in reference 4, so
the approximations can be applied with confidence to other cases.
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Characteristics of a Bay Without Frames

The differential equations for a shell without circumferential bending stiffness can

be obtained from equations (16) to (19) of the first section by setting i = 0 in equation (16).

The results for symmetrical harmonic coefficients are:

dqn
&= - (A.2)
dp
n no= _
ax r 40 (A.3)
_ ' dtTn
P, < Et = (A.4)
[ S
a, = Gt[; un—Ex_J (A.5)
The general solution of these equations is:
q, = q,0) (A.6)
- _ nx - —
[ q,(0) + p (o) (A.7)
T -1 g (o) + 25 (0) + U (o) (A.8)
n 2 Et n Et' 'n n
v - | X I S PP nx"p (o)
n 6Et'r Gt n 2Et'
+ 1 (0) + V_(0) (A.9)

In the present example, u_(o) = 0, since distortions of the shell are symmetrical
with respect to the plane of the 18aded frame, x=0 . Evaluate equations (A.8) and
(A.9) at x=£ with U _(0) = 0 . Then eliminate p _(0), g (o) by use of equations (A.6)
and (A.7). This leads "to: n n

(2)= Vn(o) - Dllqn(£)+ Dlzﬁn(z) (A.10)

<

n

u (4)= - D21§n(i)+D

n p_(£) (A.11)

22%n

8c0T-1
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where

D _ ng

12 = Pa1 T 3Efr Doz T R

General Solution for Shell with Frameless Bays Adjacent to the Loaded Frame

Additional relationships between En(b, f)n(ﬂ), i (¢) and ¥ (£) are obtained
from the equations for the shell with "smeared-out" ffmes extending from x= £ to
infinity. These relationships are derived in Appendix B, and may be written:

Vn(f/) = ann(@) + lepn(ﬂ) (A.12)
un(l) = 221qn(13) + Zzzpn(ﬁ) (A.13)
where
36 Lg
2 7 z 2ol

Et' rznz(n2 -1)

GLS
72 = -7 = —C
12 21 Et' rn(n2 -1)
_ v 2, 2
Z22— 12 Lcan/Etn(n -1

Eliminate u_(7) and Vn(e) from equations (A.10), (A.11), (A.12) and (A.13).

v (o)

(Z,, *+ D, )3,@) + (Z, -D ) B @) (A.19)
0 = (Zy) + Dy 3y + (Zyy = Do) B, (D (A.15)

Replace Gn(ﬂ) by Gn(o) from equation (A, 6)and solve for Vn(o) / c‘ln(o):

v, () (Z15=Do)(Zy + Dy)
@

- (A.16)
22 D22)
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This expression replaces equation (49) for the problem at hand. The solution
from this point on is identical with the solution given in the main text. Equation (49)
can be written as:
Vn(o) 36 Lz Kn
= = (A.17)
qn(o) r12(n2 -~ 1)2Et'r2

K_ is the only factor which enters the solution in the main text. Hence, let the
solution for the present case be given by:

33—
v (o 36L K (¢
YnEO; = 53 ¢ Zn( )' 5 (A.18)
M n"(n” -1) Etr
where
= _ 0o’ - 1)Et's” (Z15 = Dy9) (25, * Dy))
R () = 5 (Z, + D) - 5y (A.19)
36 Lc 22 22

Further development of the solution can be confined to the evaluation of f(nw).

For £=0, I—(n must be equal to Kn . For £=0, D D D and D22 vanish.

117 7127 T2y
Hence,
2, 2 2 ,,'.2 Z Z
R (o) = n (n -31) Etr le _ 12Z 21 (A. 20)
n 36 L 22
c
This equality may be verified by direct substitution for Z,;, 29, 25y, and Zs,,
and cornpared with the defining formula for K, in equation (46). Equation ](A. 19) may
be rewritten as follows to incorporate the result of equation (A.20).
= @° - m? Et'r’ Zip %y (Byp 7 D)2y * Dy
K@ =K+ 36 L D1+ —z - Z..-D_) (A.2)
n c 22 22 " 722
Substitute explicit values for letter symbols and obtain after some algebraic
manipulation and introduction of the parameters, Lr and a s
3.3
3 .2 L\ 23(1+2az—ﬂ———)
R o) = (" - n) (_ﬂ_ (_r> 2(_!5_> n_ 1*ap A.22
K @) =K + 6 4l ¢ +3 + =3 ( )

L L _
(¢ ¢ (n 1)1 + a + oznﬂ)

This expression can be used in place of Kn in the results of the main text, in order to
get an accurate solution of the substitute problem.

QeS0TI
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Approximate Corrections for Finite Frame Spacing

If it is assumed that £Z/L is small and that terms for large value of n are un-
important, a reasonabl% accurégte approximation to equation (A. 22) is obtained by
omitting terms in ﬂz, £, etc. This gives

_ 3 2 L2
Bl = Ky Q?é‘nL(Li)[‘*(I?) : 7—3—‘1 (4.23)
c . c n” -1+ an)

which reduces to:

= _ 2 0,2 1
R0 = K v = )" da v 5o J (A.24)
c n
o n/n? - 1 L
where K~ = —Y———  and is the value of K_for —%= 0.
n 2/73 n ¢

Since Kn enters into calculations multiplied by ¥y [fee equations (66) and (678
it is useful to ~consider the change in K, as an equivalent change in vy . Let

where

£ (Kfl )2 1 1
= vy 1+T K 4an+—1—‘ra— J (A. 25)
n

c n
For large value of n , Y, nincreases as n2 for Ly/Ls =0, and as n3 for Lr/Lc > 0.
?

For n = 2 and L /L =90
T’ ¢c

_ £
Yo * y<1 + Lc) (A. 26)

To treat the dependence of y,  on n correctly, £/L_ must be introduced into the
solution as a separate parameter. > In order to avoid this 3ifficulty, Yg,n may be re-
placed by an approximate constant, y* , chosen to give a best fit to the family of values
of Yo.n - Considerations pertinent to the choice of this constant are:

(1) For large values of vy (heavy reinforced frame) the term for n= 2
dominates in the solution.
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(2) The choice of £ in equation (A. 25) should not be less than zo/z .

. 2 3
(3) Y n increases as n or n .

In view of these considerations, for large values of y let:

0.2
* zo (KZ) 1
v¥ = y| 1+ =T K LcKz 432 + 1+a (A.27)

For smaller values of yK_, y* should be smaller than indicated by equation (A.27)
An empirical rule that will be sh%wn to be satisfactory is:

P
£ ‘ / 1+ (L./L) '

Y =y 1T

L 2
3, (7))
¢ 142 (L /L) 2vK,

L (f

1
1+(IL‘—CT)2 ]
(A. 28)

where the substitution a_ = (L /Lc)2 has been made. The following table shows the
value of y for which val%es off Y n and y* are equal, assuming £= 4/2 and Lr/Lc =

v
(o]

. 345

.144

.082

b win| s

The rule given in equation (A. 28) makes it possible to intréduce a correction for finite
frame spacing by modifying the value of vy .

By using the concordance established between the parameters of this report and
those of reference 4, it is possible to compare the results of the two solutions. The
required relationships are developed in Appendix C. Values of the parameters were
chosen to represent the extreme ranges in airplane fuselage construction and a number
of curves were plotted, using equation (A. 28) to correct the beef-up parameter for the
effects of finite frame spacing. In all cases, the value of the criterion of equation (A.1)
was small and hence, the correction to y was substantial. A typical example is shown
in figure 7 in which the effects of the accurate and approximate corrections [equations
(A.24) and (A.28), respectively,] can be compared. The correction for finite frame
spacing, suggested in equation (A.28),is considered satisfactory.

0.

8c0T~1
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Correction to the Example of "Tllustration of the Effect of Frame Flexibility on

Shell Loads" (page 26)

Substituting the parameters of the exampie into equation (A. 28) gives a value

for v* of 0.13.

in the stresses computed, using vy

APPENDIX B

REINFORCED LOADED FRAME AT FREE END
OF A SEMI-INFINITE UNIFORM CYLINDRICAL SHELIL

Statement of the Problem

Corrections of this order of magnitude produce small changes
0.10 .

It is convenient at this stage to consider the case of a loaded frame at the free
The solution to this problem is required when solving
problems concerned with a shell that is non-uniform in the axial direction.* In
particular, the Input Impedance is required.

end of a semi-infinite shell.

Solution

The differences between the solution of this problem and that of the infinite
shell are due to the boundary conditions at x = 0.
is zero direct stress in the shell at x = 0, while in the infinite shell, axial extension
is prevented at x = 0, due to symmetry.

For the semi-infinite shell there

It is shown in the main text that the Input Impedance to an infinite shell
is the same for n < N, as itis for n > N, . Herethe case of n < Ng is com-
puted, corresponding to characteristic equation of the general solution having complex

roots.

The general solution for an applied radial load is:

k=1l
-

pn

un

[ T o B O

vn

sin an +

]

B, (0)

q (o)

7 ()

cos an

(B.1)

The equations for applied antisymmetric loads take exactly the same form, and what

follows applies to them also.

* gee reference 6 and the correction for finite frame spacing in Appendix A.
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From equation (B.1) we have

dp _ _
dxn e anx[_ ‘O‘nEpn + Bnpn(o)l sin an + IBnE

on anﬁn(o)l cos an ] (B.2)

G duq, dv
and similar expressions for gagxll—, dxn and H‘;Tn .

The eight constants in equation (B.1) can be evaluated by the use of equations (16)
to (19), of which only three of the four equations (16), (17}, (18), and (19) are independent.
Equations (16), (17) and (18) are used. The coefficients of the Sine terms must be equal
and likewise the coefficients of the Cosine terms. Substituting equation (B. 1) into
equation (16), we have, equating first the coefficients of Sine terms and then Cosine
terms,

3
o
_ _ Ei 3 .2 N
anEqn + ﬁnqn(o) = r4 (n n) Evn o
(B.3)
- Ei 3 2 _
- PBEgn T @p 9,0 = A (n” -n)" v (0)
Substituting equation (B. 1) into equation (17) and equating coefficients leads to:
-a E _-B P (0 == E \
*n pn nPn 0) = T qn
y (B.4) A
-— n -
BnEpn - o p (o) = 7 g (o)

Similarly, substituting equation (B. 1) into equation (18) gives

N |
- anEun Bn un(o) T Et' Epn
) (B.5)
X Eun - Olnun(o) T Et Py

J

Eliminating Epn’ Eqn’ Euns and Eg, from equations (B.3), (B.4) and (B. 5),

the following two equations are derived:

. .1
2a r :
n r, 2, .2 r !
v i) | = + 2@l gt — 52— . q (o)
n Ei(n® - n)? n e pindon? e
) |
w) | = |-2- L - n RO
n r Et‘(a2+ 32) Et'(a2 + 32)
n n n n
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Introducing the relationships for the characteristic lengths gives

3

12 Lc @, nLc ™
v_(0) =t d (o)
n o rz(nz -1) r n
_ o Pte
Et' n(n®- 1) (B.6)
nLC
- -7 L 3
u (o) - 2a Lo p,(0)

Equations (B.6) are the stress-displacement relationships at the free end of a
semi-infinite shell. It should be noted that equations (B.6), derived for x = 0, hold
at any point x, provided the shell is uniform between x and « . The equations for
antisymmetric applied loadings are of the same form with (—in(o), replacing c‘;n(o), etc.
It can be shown that they are true for real roots of the characteristic equation.
Equations (B.6) are used in reference 6 in the solution of a practical shell problem.

Input Impedance at a Free End

The Input Impedance, '\7“(0)/ dn(o) = x:/’n(o) /(=1n(o), at a free end is found directly
from equations (B. 6) by setting f)n(o) =0.

3 3 2
Y36 ., R S SR VAL G 1+(n_2_-1)(££)
} V'3 3 Le

Vn(o
= o :
4,0 (43 _ )2 e'n Et'y? (23-n)2Et'r?
(B.7)

Calculation of Harmonic Coefficients

The method follows that method used in the main text. A relationship between
shear tlow and tangeuniial dispiaccmcnt cocfficionte in the shell at x = 0 is found in
equation (B.7). This relationship is substituted in equation (62) to yield the shear flow
harmonic coefficient at x = 0. From this point a complete solution to the problem,
analagous to that for the doubly infinite shell, can be developed by applying the boundary
condition P (o) = 0, instead of @ (o) = 0, for the case of the doubly infinite shell, to
equations (391) and (35). In what Sllows only the symmetric loading case is discussed
since the results hold for unsymmetric cases, except for expressions involving external
loading.

Equation (B.7) can be written, using the relationship Et'= 36 Ei Lg/r6, as

Vn(o) r4 20zn
a0 " E 32 (B.8)
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Substituting equation (B. 8) into equation (62) and noting that since the loaded
frame is supported by the shell on one side only, Aﬁn = ﬁn(o),

nP
0

Tr

q.(0) = m (B.9)

The antisymmetric shear flow coefficient at x = 0 is derived in the same
manner as the symmetric coefficient and is:

2
-1 T+(—1——n—lM
h— o r o
Tr
(1+4chan)

q (o) = (B.10)

Comparison of equation (B.9) with equation (66), the equivalent equation for the
infinite shell, shows they are are the same except that 4LC o replaces Kn-

Now it is a simvple matter to derive a complete solution for the stress and dis-
placement distributions for the semi-infinite shell, with loaded frame at free end, as
explained above.

APPENDIX C

RELATIONSHIPS OF PARAMETERS OF THIS
REPORT WITH THOSE OF REFERENCES 1 AND 4

It is important to be able to compare the results of this report with other solutions
to the problem of a loaded frame in a circular, cylindrical shell. References | and 4
present two such solutions whose derivations are based on assumptions different from
those of this report. It is of interest to compare the parameters of the three methods
and derive relationships between the se parameters.

Comparison of Parameters of This Report With Those of Reference 4

In order to compare the results derived in the main text of this report and
those of reference 4, a concordance must be established between the parameters of
this report and those of reference 4. A direct comparison of the parameters involved
shows the following relationships exist:

AN 2.95

oal/4 to _ /6 v? (C.1)

2.25

'Y:

_ L 1/4
Le _s&. at* e f 225
L, 2 JA/B YHL/L)

>

8c0T-1
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Io = LZO, due to the assumption of identical frames throughout the shell, in reference 4.

The curves of reference 4 can be used for the analysis of reinforced frames in
shells whose frames are not uniformly spaced, by means of equations (C.1). In so
doing, the frame spacing, £ _, given by equation (C. 1) should be checked with the
actual value of frame spacing. If the value in equation (C. 1) is much larger than the
actual value, the results given by the curves in reference 4 may be inaccurate. This
application of reference 4 amounts to relumping the frames so that all the idealized
frames have stiffness equal to the stiffness of the loaded frame.

Comparison of Parameters of This Report With Those of Reference 1

Infinitely Long Uniform Shell

In reference 1, the assumption is made that the tangential displacement of the
loaded frame is proportional to the local value of shear flow. The form of this
relationship is:

2L

v
q- & (C.2)
where Gt is the shear stiffness of the skin panel (assumed uniform) and L is an
unspecified length, (except for the recommendation that it should never be made
greater than the radius of the shell). Inthe terminology of this report, the above
equation gives,
v, () ] v, (0) _ 2L .3
d (o) éIn(O) t )

L may be evaluated by comparing equations (A.17) and (C.3). One form of the result
is:
Lc 2 4.5 Kn
L= Lc<f) N (C.4)
b (n -mn

Note that L is a functionof n. in1iact, 1or L /L =v, L decledses as i/‘u4; fus
3 [¢4
Lr/I’c > 0 and n large, L decreases as 1 /n°,

Since a constant value of L has been assumed in reference 1, a direct comparison
with the present theory cannot be achieved. A device similar to that employed in the
correction for finite frame spacing is required.

The curves presented in reference 1 are drawn as a function of the parameter,
d, defined below:

d-= TiE (C.5)
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If the value of L obtained in equation (C.4) is substituted into this definition,

3 2
d = _ -n)” (C.6)
vK
n
Note that d is also a function of n. In fact, d increases as n4 for Lr/Lc = 0, and

as n3 for Lr/Lc > 0 and n large.
For large values of y the term for n= 2 dominates the solution. In this case

/ 2
36 L (Lr/Lc)

d = =. (.7
2 aeea/L)’?

This analytic expression for d may be used, in connection with the curves of
reference 1, for sufficiently large values of vy .

Q2011

In order to obtain the limits of applicability of equation (C.7) and an empirical
relation between d and y for small y , the following table gives values of d calculated
by equation (C. 6) and corresponding to various values of the parameters in reference 4.

TABLE C-1 .

VALUES OF d CORRESPONDING TO VARIOUS
VALUES OF PARAMETERS A AND A/B IN REFERENCE 4

A 200 2 X 104 2 X 106
A/B w 30 w | 100 o | 1000
v 3.26 .1032 .0326
Lr/Lc 0 |.s84 0 1.46 0 1.46
n d d d d d d
2 110 | 60 350 117 1,110 372
3 722 | 258 | 2780 477 7,220 1,510
4 2460 | 660 | 7800 | 1200 | 24,600 3,800
5 6240 11260 |19700 | 2400 | 62,400 7,570
6 13200 |2300 |41800 | 4190 | 132,000| 132,000
7 24600 | ---- | 78000 | 6720 | 246,000| 21,200
Best Fit* 100 40 | 2200 100 | 25,000 1,000

* As determined by comparing curves for various d values with
the curves from reference 4 corresponding to the values of A
and A/B indicated at the top of each column.
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The values of d labeled "Best Fit" are determined by taking the curves in
. reference 4 for bending moment due to applied radial load C.,,, corresponding to the
values of A and A/B indicated, and plotting them on top of page of curves of Cy,p in
reference 1.

The values of d indicated in Table C-1 are plotted vs. n in figure 8. The ""Best
Fit" values of d on each curve are joined by a dashed line, which is the desired curve
giving n as a function of d. Values of n less than 2 were not permitted on theo-
retical grounds, and it was decided to keep n=2 for d g 110.

The relationship between y and d is derived by substituting the relationship
n = f(d) from figure 8 into equation (C.6). K, is a known function of 1p/I,andn.
This enables curves of y vs. d for various values of Ly/Ls to be plotted in figure 9.

Substantiation of this method of computing d was achieved by comparing a large
number of curves in reference 4 withotherscomputed from reference 1 using figure 9
and equation (C.1) to compute d . A few typical examples are shown in the figures.

L-1028

The present method of computing d makes the curves in reference 1 practically

identical to those in reference 4. Thus, the objection to the use of reference 4 for a
heavily reinforced loaded frame supported by a shell with closely spaced frames carries
over to the use of reference 1 for the same purpose. In view of the primitive idealization
of shell action embodied in equation (C. 2), it may be wondered whether the method of
reference 1 has any value. Consider the problem of analyzing a very complex frame
with non-uniform bending stiffness, cross-braces, etc. The solution of this problem is

. made tractable if it can be assumed that the supporting shell may be replaced by a set
of simple springs whose stiffness is given by equation (C. 2). Such a procedure is
presented in reference 9. It has been shown in this Appendix that this procedure is

. rational provided that L is computed from figure 9 and equation (C.5).

Semi-Infinite Shell

From reference 1, but using the notation of this report,

n__ - (C.8)

Substituting equation (C. 8) into equation (C.5), an expression is obtained for d :

4
B r
d = ET_ v _(0)/a_(0) (C.9)

The Input Impedance at the free end of a semi-infinite shell is given in equation
(B.7), and on substituting it into equation (C. 9):

3 2
q - ;@ (n ‘n)z — (C.10)
_ -1
Zyn/; 1 /1+ n 3 (L_z)z
_ 9

> for n = 2
Y l/ 1+ (Lp/Lg)
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It has been shown that for the infinite shell

36 1+ (Lr/Lc)z

) Y |1 +2 (Lr/Lc)zT

d for n = 2

Thus, for small values of Lr/Lc, d, for the semi-infinite shell, is approximately
1/4 that for the infinite shell, for that range in which n =2 dominates the solution. For
values of d > 110 it becomes necessary to account for the higher order stress systems, as
has been done previously in this appendix, before comparing d for the infinite shell and
semi-finite shell.

APPENDIX D

LOADS IN AN UNLOADED FRAME

Using the equilibrium equations of the shell [equations (1) to (4)], the frame bending
moment per inch in the shell, m , and the other internal forces can be derived as functions
of £/Ls. The bending moment at a frame, adjacent to a loaded frame, is obtained by
multiplying m by I,/i. The axial and shear forces in the frame can then be found by
utilizing the equations of equilibrium of the frame.

From equations (1) to (4), the equilibrium equations of the shell,with "smeared
out'" frames, are:

—az_s . of
8¢2 o¢
om -
90 sr = 0 (D. 1)
2
1 9s ,0809*s _
r 2 X r

o¢

Taking the case of a radially appliedload and introducing the harmonic coefficients
from equations (13) into (D. 1), the equations for the harmonic coefficients are:

2_ J— —
-n's o S
n + _qn+_p. = 0
T X T
_ (D. 2)
nm +s. r = 0
. 2 o, (D.3)
mn - 2 ox

820T-1
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A similar expression can be developed for m o, the analagous harmonic co-
efficient for the antisymmetric applied loading. §_ is found from equations (43), and
taking into account the antisymmetric case as welf} the bending moment per inch be-
comes:

|

n <Ng [ —opX
m = dn(o) cosn¢ + ﬁn(o) sin n ¢ r_ez__ [ o, <cos B X
n= L n(n- - 1)

n
2 aan 20‘113 n

2 2 2_ 2
- (____an _ Bn) sin an> + B8, (sin BpX * (E_ﬁ_) cos an> ]

o0

2 o

e
+ z [Qn(o) cosn¢+c:1n(o)sinn¢ :| L lnz 22n

2
n>Ng n(n” -1) o -a

®.4)
The bending moment in an unloaded frame at £ is given by
)
ME =5 m ©) (D.5)

The shear and axial forces in the unloaded frame are found from the equations of
equilibrium for a frame, equations (50) to (52), with m, =p, = t =0.

I
_1dM_ 1 %  dm
S=% o r i d¢ (D. 6)
F = ____.ds — _1;, _._Ip .__dz Mo
T e T T TR =7

Substituting equation (D.4) into (D.5), (D.6), and (D.7) gives the bending moment,
shear force and axial force in an unloaded frame, distance £ from the loaded frame.
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APPENDIX E
EFFECT OF ECCENTRICITY OF LOADED FRAME

Introduction

The problem of a loaded frame whose neutral axis does not coincide with the skin
line in a doubly infinite shell is considered in two parts. First, the ""elementary beam
theory' part is taken from reference 8 and modified slightly to agree with the sign
conventions used in this report. Secondly, the solution for the '"self-equilibrating"
part is given in a form similar to the main text for the frame without eccentricity.
This splitting up of the total solution is explained in the main text.

Solution - "Elementary Beam Theory" Part

The table below is taken from reference 8.

M S F
P (1-mr P . P
o COSd_( _ivei O, _ _2sin _ol2co
b |2 R D =l isge-ese
0
+gsin¢>:| +(1r_¢,)sin¢,:l
T (1-n)r T T [,
09 e - o, _ . 2cos¢p | _o| 2sing 3 _.
- 57 [(‘H o)(1-cos ¢) ﬂ{i(" ¢) sing + (Tom) 27"L (1-n) 250 ¢
o
3 . 5
—Esmq)} —Ecos¢—(1—n)j| -(1r—¢)cos¢}
M M M sin ¢
M [To _ _ . o) _ __o
o5 [(17 ¢) - 2sin ¢ ] —2“1_”)‘:(1 n)+ 2 cos ¢ jl A

8c0T-"1
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General Solution — Self-Equilibrating Systems

Loaded Frame in a Doubly Infinite Shell

Assumptions. Except for there being an eccentricity g between the median
plane of the skin and neutral axis of loaded frame, the assumptions are identical with
those of the main text.

The equations of equilibrium are derived from figure 11. They are:

1dF o 1g,.1, _
r do¢ Ag-yS+yt, =0 (E.1)
4as -
o F + P, = 0 (E.2)
dM 2
d¢—Sr—ma+rnAq—0 (E. 3)
Stress Strain Relations:
d¢ _ MO -7mr
i - (E.4)
¢ EI
o
Strain Displacement Relations:
Using the displacements Vv , w and 6 as the displacements of the neutral axis,

as in the main text, we find that 'w and ¢, the radial and rotational deflections,
respectively, are not affected by eccentricity. However, v, the tangential displacement
at the skin line, is given by:

V= ov,, tore (E.5)

Substituting this into the "inextensional' relations given as equations (54) and (55),
we have

-g—‘g:—v+ or (E.6)
%ﬁ -nr%ﬁ} - w (E.7)

Combining these seven equations and introducing the harmonic coefficients, leads
to a relationship between the tangential displacement and shear flow coefficients.
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Firstly, eliminate w from equations (E.6) and (E.T)

3 3
l{d—"3+g—;” =n gl +%% (E.8)
"lag d¢
Using equations (E.4) and (E. 8), we have
3 2
%d—‘g,’Jr% R o LR (E.9)
d¢ : o) de
Combining equation (E. 1) and (E. 2)
2 p
1]d7s 1 a
A = - =y - -——
q T d¢>2 + S}y + T ta a5 (E.10)

From equation (E. 3) obtain expressions for dZS /d<1>2 and S, which are substituted
into equation (E. 10) to give

2
2 dp 3 d"m
n (d7Aq A) _1 a 1 d’M , dM a
1+ — +8qg)t = t -t -T2l —m tg. -— % -m
1-1 ( d¢2 r {a do¢ 1-7r d¢>3 do¢ d¢2 a

(E.11)

At this juncture, consider the effects of symmetry and introduce the harmonic coefficients.

Applied Radial Ioad

Introducing the harmonic coefficients (see the main text) into equations (E.9)
and (E. 11) and noting that m, = ta = O leads to:

3 —
(n” - n)EI0 v

M=
n 20 - ma - ) (E.12)
and 3 —
2 (n” - n)M nP
Aq o =D MMy + —2 (E.13)
n 1-m a - n)rZ Tr

Substituting equation (E.12) into equation (E. 13) and noting that q—n(o) = an/z R
in the case of a doubly infinite shell, we have

3 2 -

_ [n2 -yl (n” - n) EI0 V. nPo

LU iy e - 2 4 2. "o
201-7)"r" (1-m")

(E.14)

82011
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For the shell, we have from equation (49),

4
r K
i (o) = n 3 (0) (E. 15)
n Ei(n® - n)2 L %

Combining equation (E. 15) and equation (E. 14) gives

nP
27T
q (o) = L (E.16)
n BT S ‘
(-1 2 2
(1-m7(1-m"

Equation (E. 16) can be rewritten as

nP
_2(_1;112__
— 2 -
qn(°)= ar A1 nn

%k
1+ y*K)

where

Y
(1-ma - m??2

y* =

Applied Moment and Tangential Load

Taking due account of antisymmetry and carrying out similar operations as for the
radial load

T 2
1 o] n -1 1-7
-y — - M
27 r I‘2 o] 1 nnZ
q,(0) = :
a0 L0k WO
AN 4 ““n’

By using these modified shear-flow harmonic coefficients in the manner given in the main
text, the entire solution to the problem can be generated.
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L-1028

Figure 1. - Loads per inch and displacements in the shell .

Figure 2. - Externally loaded frame.
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82011

Figure 3. - An exploded view of the shell.

Figure 4. - Loads per inch and displacements in the shell.
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Figure 7. - An example to illustrate magnitude of correction due to finite frame spacing.
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Figure 11. - Loads and displacements in the frame accounting tor ecceniriviiy

NASA - Langley Field, Va.

between skin and frame neutral axis.
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